
Klaros-Testmanagement Tutorial

Version 5.7.2

Publication date February 20 2025

Copyright © 2009-2025 verit Informationssysteme GmbH

Klaros-Testmanagement Tutorial
by Sabrina Gidley, Fabian Klaffke, Claudia Könnecke, Klaus Mandola, Patrick Reilly, and Torsten Stolp-
mann

Version 5.7.2

Publication date February 20 2025
Copyright © 2009-2025 verit Informationssysteme GmbH

Abstract

This document serves as a tutorial for the Klaros-Testmanagement application. It gives an example tour
through the application and the provided functionality.

Legal Notice . Copyright 2009-2025 verit Informationssysteme GmbH, Europaallee 10, 67657 Kaiserslautern, Germany. All
rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or documentation may be reproduced in any form by any means without
prior written authorization of verit Informationssysteme GmbH and its licensors, if any.

Trademarks

Oracle™, Java™ and Solaris™ are registered trademarks of Oracle and/or their affiliates.

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.

JIRA® is a registered trademark of Atlassian Pty Ltd.

Other names may be trademarks of their respective owners.

Table of Contents
1. Introduction ... 1

1.1. Navigation ... 1
2. Quick Start Guide ... 2

2.1. Setup .. 2
2.1.1. Creating a Project ... 2

2.2. Creating Systems under Test ... 3
2.3. Creating Test Environments ... 3
2.4. Creating Test Cases .. 4
2.5. Creating Test Suites .. 6
2.6. Executing Tests ... 7

2.6.1. Executing Single Test Cases .. 7
2.6.2. Executing Test Suites .. 11

2.7. Results and Reports ... 12
3. How-Tos .. 15

3.1. User Role Management .. 15
3.1.1. Limiting Project Access ... 15

3.2. Categorization ... 17
3.3. User Defined Properties ... 19
3.4. Pausing and Resuming Test Cases and Test Runs ... 21
3.5. Configuring Issue Management Systems .. 22
3.6. Issues ... 23

3.6.1. Linking Issues ... 24
3.6.2. Creating Issues ... 25

3.7. Revisions ... 26
3.8. Requirements .. 26
3.9. Iterations ... 28

4. Creating custom reports ... 31
4.1. Development Environment .. 31

4.1.1. Creating a project to contain your reports ... 31
4.1.2. Setting up the Project ... 32

4.2. Preparing the Data for the Report ... 35
4.3. Creating the Report Layout ... 37

Glossary .. 46

iii

List of Figures
1.1. Navigation in ... 1
2.1. The >Projects page .. 2
2.2. The Systems under Test page .. 3
2.3. The Test Environments page .. 4
2.4. The Test Cases page ... 4
2.5. The Test Case Step tab in the Test Cases page ... 5
2.6. The Test Suites page ... 6
2.7. The Test Suite page ... 6
2.8. The Run Test Case page .. 7
2.9. The Run Test Case page .. 8
2.10. The Test Case Runner .. 9
2.11. The Results Overview in the Test Runner ... 10
2.12. The Run Test Suite page .. 11
2.13. The Run Test Suite page .. 11
2.14. The Test Suite Runner .. 12
2.15. The Dashboard .. 13
2.16. The Test Case Results page ... 13
2.17. The Test Case Result page ... 14
2.18. The Test Case Result page ... 14
3.1. The “Access” Tab .. 16
3.2. A Project with Limited Access .. 16
3.3. Creating Categories ... 17
3.4. Assigning Test Environments to Categories .. 18
3.5. The Test Environment Categories ... 19
3.6. Adding User Defined Properties .. 20
3.7. The User-Defined / System under Test page ... 21
3.8. Continuing a Test Run ... 22
3.9. The Issue Management page .. 23
3.10. Linking Issues ... 24
3.11. Creating Issues .. 25
3.12. The Requirements Page ... 27
3.13. The Requirements Details Page .. 28
3.14. The Iterations Page .. 29
3.15. The Selected Iteration in the Topbar ... 29
3.16. The Iteration Details Page .. 30
4.1. The Wizard Selection Screen .. 31
4.2. The New Project Wizard ... 32
4.3. The Package Explorer .. 32
4.4. Creating a New Folder ... 33
4.5. The Build Path Setting Screen .. 34
4.6. Selecting an External Jar File ... 34
4.7. The Package Explorer .. 35
4.8. Creating the KlarosScript Class .. 35
4.9. The Created Class ... 36
4.10. Sample Front Page of a Report ... 39
4.11. A Generated Pie Chart ... 40
4.12. The Header of a Test Case Report .. 41

iv

List of Tables
3.1. User Roles ... 22

v

Chapter 1. Introduction
is an easy-to-use web based application which helps to organize test projects. It manages test
cases, test suites, information about systems under test and test environments in which tests
have been run. When a test case or test suite has been executed, its result, including the informa-
tion about the system under test and its test environment, is stored in a database. This enables
full traceability of all test runs. Multiple reports enable a detailed overview of the progress of the
project at any time.

1.1. Navigation

Throughout this tutorial you will find instructions for navigating through . Figure 1.1 shows a typ-
ical page with the navigation areas numbered.

Figure 1.1. Navigation in

The User Interface of

1. The top menu bar. Here you can access functions for selecting the current project, for keyword
search, help, language selection and logging out.

2. The sidebar shows the five main sections. If you hover over a specific section in the sidebar,
the menu entries for this section are displayed.

3. The log panel displays various information, warnings and error messages.

4. Most tables in have an action column like the one shown here. A click on the respective icons
in this column executes actions for the objects in the corresponding row.

5. Many pages in have buttons like this to perform actions like creating new objects, or saving or
discarding changes. These buttons are always located above or below the table.

1

Chapter 2. Quick Start Guide

Our quick start guide shows how to create a project containing test environments, test systems
and test cases and a test suite. The test cases contain test steps, and user-defined fields and
categories are created. Then a single test case and a test suite with three test cases will be exe-
cuted and finally the results will be displayed.

The system under test is a printer for which both hardware and software (drivers) should be tested.
The driver software is available in different versions and for different operating systems, here
Windows and Linux.

In addition, there are two separate development teams: one for the hardware, the other for the
software. The hardware team uses as system for defect management, the software team uses .

2.1. Setup

First the test setup is created. This includes the project, the test environments, the systems under
test, test cases and a test suite.

2.1.1. Creating a Project

Projects are the top-level objects in . All other objects such as test cases, iterations, requirements,
or test suites are part of the project. Therefore, creating the project is always the first step when
working with :

1. Press the New button to create a new project.

Figure 2.1. The >Projects page

2. Enter Printer as the project Description.

3. Press the Save button. A unique project ID is assigned automatically.

Activate the new project with the radio button to the left of the project ID or to the right in
the action column. Now the other menu items in the side menu bar can also be selected. The
new project can now be edited with the icon.

2

Quick Start Guide

2.2. Creating Systems under Test

Next we create our systems under test. In , a system under test represent the versions of the
product or software system to be tested. In our example these are printers.

1. Under Define, select Systems under Test from the side menu bar.

2. Press the New button.

Figure 2.2. The Systems under Test page

3. Enter the text Printer Model 1 in the Version field.

4. Press the Save button.

5. Repeat the process for three more systems under test:

• Printer Model 2

• Printer Model 3

• Printer Model 4

Clicking in the ID column header changes the order of the displayed test systems.

2.3. Creating Test Environments

The next step in setting up the project is to define the test environments in which the tests will
take place. In the test environment defines the external influences that can influence the test
result. This could be the operating system on which the printer driver is installed or the physical
environment in which the printer is operated.

For this tutorial, we will create two software-related and two hardware-related test environments.

1. Under Define, select Test Environments from the side menu bar.

2. Press the New button.

3

Quick Start Guide

Figure 2.3. The Test Environments page

3. Enter Ubuntu 20.04 in the Description text field and click the Save button.

4. Create three more test environments with the following values in the field Description:

• Windows 10

• Average Room Temperature

• Maximum Operating Temperature

5. Press the Save button.

2.4. Creating Test Cases

Now follows the creation of the test cases. We will create test cases for both the hardware and
the software team. The first test for the hardware team is to verify that the printer meets the
specifications regarding the minimum number of pages printed per minute.

1. Under Define, select Test Cases from the side menu bar.

2. Press the New button.

Figure 2.4. The Test Cases page

4

Quick Start Guide

3. Enter Test if the printer prints at least 10 page per minute in the Name field. The
name provides information about the function/task of the test.

4. Press the Save button.

5. Click on the test case ID or on the icon in the action column.

6. Select the Steps tab.

Figure 2.5. The Test Case Step tab in the Test Cases page

7. Create the following steps:

Description Expected Result

Start printing the test document

Start the timer when the first page

lands in the tray

Stop timer when the last page lands in

the tray

8. Press the Save button.

Next, we create the following test cases, each with a single test case step. First click on the Back

button to go back to the list of test cases.

Name Execution Step Description Step Expected Result

Print test page Manual Print the test page

using the Operating -

System

The page is being

printed

Detect empty cartridge Manual Insert empty cartridge Printer display shows

the Cartridge empty

warning

5

Quick Start Guide

You should now see three created test cases, one with two test steps and one with three test steps.

2.5. Creating Test Suites

The final step before testing can commence is the definition of test suites. In test cases are as-
signed to a test suite in order to execute them jointly later. A test suite can contain one or more
test cases and test cases can occur in multiple test suites.

1. Under Define, select Test Suites from the side menu bar.

2. Press the New button.

Figure 2.6. The Test Suites page

3. Enter Tutorial Hardware Suite in the Name field.

4. Press the Save button.

5. Press the icon.

6. Click on the Properties tab.

7. Press the icon on the Detects empty and the Test if the printer prints at least

10 pages per minute test cases.

Figure 2.7. The Test Suite page

6

Quick Start Guide

8. Press the Save button

Our project is now complete, and we can start to execute the test cases.

2.6. Executing Tests

Now that we have created some test cases and a test suite, we are ready for the first test execu-
tion.

2.6.1. Executing Single Test Cases

In this section, we will execute a single test case multiple times with different parameters.

1. Under Execute, select Run Test Case from the side menu bar.

2. Now the page Run Test Cases is displayed. For all existing test cases it displays an execution
icon in the column Action. The appearance of the icon can vary, for manually executable tests
the is displayed here.

Figure 2.8. The Run Test Case page

Click on the icon for the test case Test if the printer prints at least 10 pages per

minute .

3. On the next screen, select Average Room Temperature as the Test Environment

7

Quick Start Guide

Figure 2.9. The Run Test Case page

4. Select Printer Model 1 as the System Under Test.

5. Click the Execute button.

6. A new browser window will open after a message about the current execution. If this does
not happen, please check if your browser uses a popup blocker and add the web URL to the
exceptions if necessary.

In the new window the tester is guided step by step through the test procedure. On the first
page you can see an overview of the test case. The previous browser window is not required
for the test execution and can be minimized.

8

Quick Start Guide

Figure 2.10. The Test Case Runner

7. The manual test runner will now show the first step. Action shows what we as a tester are
supposed to do. Let's assume our printer will start printing the test document with no prob-
lems, so the first step is passed.

Press the .

8. Now the second step is displayed. Also mark the further steps as passed. Another dialog will
appear in which you confirm that you want to end the test execution. Click the OK button.

9. Now the overview of the completed Test Run appears. Since all steps passed without com-
plications, it is not necessary to create an issue/defect.

Click the Exit button. Now return to the overview page with the three test cases.

9

Quick Start Guide

Figure 2.11. The Results Overview in the Test Runner

Now we will execute the same test case using a different system under test and test environment.

1. Again click the icon on the Test if the printer prints at least 10 pages per minute

test case.

2. On the next screen, select Maximum Operating Temperature as the Test Environment.

3. Select Printer Model 2 as the System Under Test.

4. Press the Execute button.

5. Press the green icon.

6. Press the green icon.

7. Printer Model 2 uses the Model 2 printer heads, which have an overheating problem, so this
test step will fail in an environment with a high ambient temperature.

Press the orange icon.

8. Enter Too many pause cycles due to overheating in the Summary field.

These comments will help to reproduce the failure.

9. Click on the Finish Test button. A dialog appears in which you confirm the completion of
the test case execution with OK .

10. If you have set up an issue management system, you can create or link an issue from this
page. This process is described in Section 3.6, “Issues”.

11. Press the Finish button.

10

Quick Start Guide

2.6.2. Executing Test Suites

Next we will execute our test suite. The process is very similar to executing a test case. Addition-
ally, an overview screen will appear at the beginning.

1. Select the entry Run Test Suites under Execute in the side menu.

2. Click on the icon for the test suite Tutorial Hardware Suite .

Figure 2.12. The Run Test Suite page

3. Select Average Room Temperature as the Test Environment

Figure 2.13. The Run Test Suite page

4. Select Printer Model 1 as the System under Test.

5. Press the Execute button.

6. Press the Start button in the manual test runner.

11

Quick Start Guide

Figure 2.14. The Test Suite Runner

7. Click the green icon for all steps.

8. Confirm the following dialog by clicking the OK button.

9. Repeat for the second test case.

10. Press the Close button.

2.7. Results and Reports

Now we can take a look at the test results. has a comprehensive and detailed reporting system.

1. Log in using the manager account.

2. Select the Printer project if it is not already selected.

3. Select Evaluate in the sidebar.

4. Now the dashboard will be displayed, showing some default reports for the Printer project.
These show relevant information like the number of test cases and test suites in the Project,
the overall numbers of passed and failed test runs, and the testing activity in the last 30 days.

12

Quick Start Guide

Figure 2.15. The Dashboard

5. The “Latest Success Rate” report can be changed by clicking on the icon. There you can select
the test system and the test environment to be displayed.

6. You can also view individual test results for test cases and test suites in the Evaluate section.

Under Evaluate, select Test Case Results from the side menu bar.

7. Here you will see the test cases which have been executed in this project, along with a count
of test runs with their results.

Figure 2.16. The Test Case Results page

8. Press the icon for the Test if the printer prints at least 10 pages per minute test case.

9. You will now see a screen summarizing each of the test runs for this test case.

Press the icon for one of the test runs.

13

Quick Start Guide

Figure 2.17. The Test Case Result page

10. This screen shows a breakdown of the results of each step in the test case, as well as the
summary and description the tester has entered for each of them.

Under Evaluate, select Test Suite Results from the side menu bar.

Figure 2.18. The Test Case Result page

This page shows results of all test cases which have been run similarly to the Test Case
Results page. Have a look at the results of the Tutorial Hardware suite.

This concludes our quick introduction. The following chapters contain more detailed sections that
explain the possibilities of in greater detail.

14

Chapter 3. How-Tos

This section of the tutorial consists of how-to guides for certain actions in Klaros-Testmanage-
ment. We will continue to use the printer example project from the quick start guide.

It is recommended to complete the quick-start guide first if you wish to follow these guides step-
by-step.

3.1. User Role Management

In this section we will learn how project access works and how to limit the access to our example
project to specific users.

The default installation of Klaros-Testmanagement contains the three users admin, manager and
tester (see the Klaros-Testmanagement documentation here and here for more information
about user roles). If you create a new project (see Section 2.1.1, “Creating a Project”) all users of
Klaros-Testmanagement will have access to this project. To limit the access to this project to a
single users or several specific users, you can use project specific roles, which are part of Klaros-
Testmanagement Enterprise Edition.

3.1.1. Limiting Project Access

 Feature only available in Klaros-Testmanagement Enterprise Edition

In this section we will limit access to the Printer project. See here for more information about
project specific roles.

Assigning project specific roles

Project specific roles do not need to match the role of the user. For example, a user
with the role test manager can be a tester in one project and a test manager in another
project.

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Define section in the sidebar.

3. Select the project P00001, or the “Printer Test” project if you already created other projects.

4. Select the Access tab.

15

https://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.Roles
https://www.klaros-testmanagement.com/files/doc/html/User-Manual.Functions.Accounts
https://www.klaros-testmanagement.com/files/doc/html/User-Manual.Define.Projects.Details.Access

How-Tos

5.

Figure 3.1. The “Access” Tab

6. Click on the Assign button.

7. In the following dialog select the checkbox in front of Max Mustermann and select Test Man-
ager from the Project Role dropdown list (if not already selected)

8. Confirm the changes by clicking on the OK button.

The only user allowed to view the Printer project now is the user named manager. Administrators
can still view the project, since they are excluded from project access rules. On the projects page,
you can see which projects have access rules defined by the icon in the Additional information
column.

Figure 3.2. A Project with Limited Access

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Define section in the sidebar.

3. Select the project “Printer Test”.

16

How-Tos

4. Select the Access tab.

5. First we need to make sure, that at least one manager is assigned to the project. Select check-
box in the row containing Max Mustermann.

Click the OK button. Max Mustermann is now the only user with access to this project.

Important

If you use project specific roles, you need to assign at least one test manager per
project.

3.2. Categorization

 Feature only available in Klaros-Testmanagement Enterprise Edition

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.3, “Creating Test Environments” of the quick-start guide.

In our example project, we have separate test environments and test cases for hardware- and
software-related criteria. A useful way to separate these within in Klaros-Testmanagement Enter-
prise Edition is to use the categorization feature.

In Klaros-Testmanagement objects such as test cases, test environments, etc. can be assigned
to user-defined categories. This works similar to storing files in folders of a file system. We will
now create two categories and assign the created test environments to the respective teams.

1. Click on the icon directly above the table in the workspace to open the Categories panel.
Select Click here to edit categories.

Figure 3.3. Creating Categories

17

How-Tos

2. Press the icon to create a new category group.

3. Insert Printer Test into the field Name.

4. Click the Save button and select the category Printer Test from the drop-down menu Cat-
egory Group.

5. Next, rename the field ROOT to Team.

6. Now click on the icon in the field Team and enter Hardware in the text field of the new
subcategory. Repeat the step with the entry Software .

7. Click the Save button.

After the categories have been successfully created, the test environments can now be assigned
to the individual teams.

1. To do this, use the icon right above the table to change the view.

2. Select the checkboxes to the left of the software-related test environments (Windows 10

and Ubuntu 20.04) .

3. Click on the icon left above the table.

4. Select the entry Software in the displayed dialog.

Figure 3.4. Assigning Test Environments to Categories

5. Click the OK button. The two entries now appear in the category Software.

6. Now select the checkboxes next to the hardware-related test environments.

7. Click the icon.

8. Now click on the entry Hardware in the dialog.

9. Click the OK button.

18

How-Tos

Figure 3.5. The Test Environment Categories

If the categories panel is closed, all existing test environments are displayed. If the panel is open,
only the test environments of the selected category are displayed.

3.3. User Defined Properties

 Feature only available in Klaros-Testmanagement Enterprise Edition

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.1.1, “Creating a Project” of the quick-start guide.

User defined properties are customizable fields which can be added to the various artifacts of
a project e.g. to make it easier to find specific elements or to reference external systems or doc-
uments. In this how-to, we will set up some user defined properties for our systems under test
(or SUTs).

Since the SUTs in our example are printers, there are a number of properties that will make search-
ing through them easier. One of these is the firmware version, an alphanumeric value which is
changed relatively often.

The printers used in our example have different properties. These properties can be customized in
the tab User Defined. You will find a detailed description in Section 3.3, “User Defined Properties”.
Here we define the firmware version and the printer head models.

1. Click in the project ID or in the icon in the action column.

2. Select the tab User defined and System under Test below.

3. Click the New button.

19

How-Tos

Figure 3.6. Adding User Defined Properties

4. Add the entry Firmware Version in the field Name. The Type is already preset with the
desired value Text.

5. Click the Save button.

Next, we create 2 printer head models and define an enumeration type for them.

1. Click the New button.

2. Enter Printerhead Model in the Name text field.

3. Select Enumeration in the Type column. Click on the icon that appears in the Values column.
A dialog opens.

4. Click the New button and enter the entry Model 1 .

5. Again click the New button and enter the entry Model 2 .

6. Click the Ok button and then click Save on the main screen.

1. Click on the ID for Printer Model 1 or select the icon in its action column

2. Select the User Defined tab.

3. Enter V23.41.06 in the Firmware Version field.

4. Select Model 1 in the Printerhead Model dropdown list.

5. Press the Save button.

20

How-Tos

Figure 3.7. The User-Defined / System under Test page

6. Now click on the green arrow in the upper right corner to switch to the next element. Now
printer model 2 is displayed. Repeat the process for the remaining three systems under test.

Version Firmware Version Printerhead Model

Printer Model 2 V23.41.07B Model 2

Printer Model 3 V23.41.07B Model 1

Printer Model 4 V23.41.05 Model 2

3.4. Pausing and Resuming Test Cases and Test Runs

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.5, “Creating Test Suites” of the quick-start guide.

Klaros-Testmanagement supports pausing and resuming of test cases and test runs. If the test
runner is cancelled after at least one test step has been completed, the test run is automatically
saved in the Continue Test Runs section.

1. Login to Klaros-Testmanagement using the Tester account.

2. Select the Printer project.

3. Under Execute, select Run Test Suite from the side menu bar.

4. Select the Tutorial Hardware test suite.

5. Complete the first test case as explained in Section 2.6.2, “Executing Test Suites”.

6. Press the Cancel button.

The manual test runner will now close, returning you to the main Klaros-Testmanagement
window.

7. Select the Continue Test Run menu entry in the sidebar.

21

How-Tos

The interrupted test suite run will now be displayed, showing that one of the two test cases
in the test suite have been completed.

8. You can click the icon to continue executing the test suite or the icon to delete this test suite
run and the associated results.

Figure 3.8. Continuing a Test Run

3.5. Configuring Issue Management Systems

In order to set up Klaros-Testmanagement to use issue management systems, you must log in
as an administrator.

Note

Three user accounts are set up by default during the installation of Klaros-Testman-
agement an administrator account, a manager account and a tester account.

Username Password

admin admin

manager manager

tester tester

Table 3.1. User Roles

1. Log in as administrator and navigate to Configure - Integration - Issue Management.

2. Press the New button.

22

How-Tos

Figure 3.9. The Issue Management page

3. Select JIRA in the System drop-down list.

4. Enter PRINTER in the Project text field (or the name of a test project, e.g. PLAYGROUND)

5. Enter Hardware Team in the Description text field.

6. (Optional) If you have a JIRA system to test with, enter the address in the URL text field and
press the icon.

7. Press the Save button to save your new issue management system.

Repeat the process, select Mantis instead of JIRA and use Software Team as the description.

Now these two issue management systems can be assigned to projects within Klaros-Testman-
agement.

This concludes the role of the administrator account in our quick start guide. Log out of Klaros-
Testmanagement now and log in using a manager account.

3.6. Issues

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.6.1, “Executing Single Test Cases” of the quick-start guide.

Klaros-Testmanagement supports the creation of issues in issue management systems (IMS)
(see Section 3.5, “Configuring Issue Management Systems”) as well as linking them with test cas-
es. This can be achieved either by creating an issue in the IMS from within Klaros-Testmanage-
ment, or by using the Link Issues feature to link pre-existing issues and test cases.

Both of these actions can be carried out from within the manual test runner or in the Evaluate -
Issues section of Klaros-Testmanagement. Each Results Overview page in the manual test runner
has the Link Issue and Create Issue buttons.

23

How-Tos

3.6.1. Linking Issues

Figure 3.10. Linking Issues

1. Login to Klaros-Testmanagement using the Tester account.

2. Under Evaluate, select Issues from the side menu bar.

3. Press the icon in the action column of the test case Test if the printer prints at least 10 pages
per minute.

4. Press the New button.

5. Select the Hardware Team issue management system from the Issue Management System
dropdown list.

6. Enter a valid issue id in the ID text field (this id has to match an existing issue in the IMS).

7. Press the icon next to the ID field (Please wait a few moments until the issue has been re-
trieved from the IMS).

8. Select the system under test Printer Model 1 in the System under Test dropdown list.

9. Press the Link button.

The list of assigned issues should now contain a single entry.

24

How-Tos

3.6.2. Creating Issues

Figure 3.11. Creating Issues

1. Login to Klaros-Testmanagement using the Tester account.

2. Press the Evaluate link in the sidebar.

3. Select the Issues menu entry in the sidebar.

4. Press the New button.

5. Select the Software Team issue management system from the Issue Management System
dropdown list.

6. Enter The printer Model 1 cannot print documents larger than 50 Mb into the Summary
field.

7. In the Description field, enter The Model 1 version of the printer cannot print documents

which are larger than 50 Mb in size. This is regardless of the document type

(e.g. pdf or txt).

8. Select the test case Test if the printer prints at least 10 pages per minute in the Test Case
dropdown list.

9. Press the Save button.

You should now see a message The issue was successfully created in Mantis with ID XYZ. in the
log panel on top of the screen.

25

How-Tos

3.7. Revisions

Important

In order to use the examples in this guide it is recommended that you complete Sec-
tion 2.4, “Creating Test Cases” of the quick-start guide.

Test requirements can change during the lifecycle of a project, due to various internal or external
changes. Let's assume that in our Printer project for example, 20 pages per minute instead of 10
are the new status quo for printers. Instead of copying and editing the test case Test if the printer
prints at least 10 page per minute you can simply create a new revision for that test case.

Note

With Klaros-Testmanagement you can create Revisions for test cases, test segments,
test suites and requirements.

1. Login to Klaros-Testmanagement using the Manager account.

2. Select the Printer project.

3. Press the Define link in the sidebar.

4. Select the Test Cases menu entry in the sidebar.

5. Press the icon on the test case Test if the printer prints at least 10 page per minute.

6. Press the Revisions tab.

7. Press the New Revision button.

8. Enter requirements have changed in the Comments text field.

9. Press the OK button.

10. Press the Properties tab.

11. Change the Description of the test case to Test if the printer prints at least 20 page

per minute .

You have successfully created a new revision of the test case.

Note

When creating a new revision, this revision gets selected as the active revision for that
test case. You can, at any time, switch back to an older revision via the revision tab.

3.8. Requirements

 Feature only available in Klaros-Testmanagement Enterprise Edition

26

How-Tos

Requirements are conditions which must be met in order for the product to be considered ready.
A requirement can be linked to several test cases, which must be executed in order to fulfill this
requirement.

In the course of this section, we will create a requirement, link it to a test case and execute this
test case.

Figure 3.12. The Requirements Page

1. Select the Define section in the sidebar.

2. Select the Requirements menu entry in the sidebar.

3. Press the New button.

4. Write The printer prints at least 10 pages per minute in the Name text field.

5. Select High from the Priority dropdown list.

6. Press the Save button.

7. Press the icon of the requirement The printer prints at least 10 pages per minute.

8. Select the Test Cases tab.

9. Press the Neu button.

10. Select the test case Test if the printer prints at least 10 page per minute.

11. Press the Assign button.

Multiple Requirements

You can assign multiple test cases to the same requirement.

You can also assign test cases to multiple requirements!

27

How-Tos

Figure 3.13. The Requirements Details Page

Now we will execute the test case with which the requirement is assigned to.

1. Switch to the Execute section in the sidebar.

2. Select the Run Test Case menu entry in the sidebar.

3. Press the icon.

4. Press the Execute button.

5. Press the green icon.

6. Press the OK button.

You have now executed a test case that is assigned to a requirement. Let's see the results of this
test case on the requirements page.

1. Select the Define section in the sidebar.

2. Select the Requirements menu entry in the sidebar.

3. Press the icon of the requirement The printer prints at least 10 pages per minute.

4. Select the Results tab.

In the results tab, you can see the results of all test cases that are assigned to this requirement.
Since we've executed a single test case, there is only one element in this table. Pressing the icon
shows you the details of this test case result.

3.9. Iterations

 Feature only available in Klaros-Testmanagement Enterprise Edition

An iteration represents a single test cycle in a project. This helps to synchronize the test process
with an agile development process (e.g. Scrum). An iteration can represent a milestone for a

28

How-Tos

project. In a software development project for example, an iteration could be The core functional-
ity is working.

In this section, we will create an iteration, learn how to activate or deactivate iterations and how
to assign requirements to a specific iteration.

Figure 3.14. The Iterations Page

1. Select the Define section in the sidebar.

2. Select the Iterations menu entry in the sidebar.

3. Press the New button.

4. Enter Sprint 01 - Alpha stage in the Name text field.

5. Press the icon.

6. Select the Properties tab.

7. Enter All printer models can print a test page without an error. and All printers

print at least 10 pages per minute. in the Success Criteria text field.

8. Press the Save button.

You have now successfully created a new iteration. Activate the new iteration with the radio button
to the left of the iteration ID or to the right in the action column. You can see the active iteration
in the topbar (see Section 3.9, “Iterations”).

Figure 3.15. The Selected Iteration in the Topbar

Using Iterations with Requirements

Iterations are more useful when combined with requirements (see Section 3.8, “Re-
quirements”). For example, the iteration "Alpha release" of a project could contain the
requirements All database unit tests pass and The setting menu is working.

29

How-Tos

Figure 3.16. The Iteration Details Page

1. Select the Requirements tab.

2. Click on the Assign button.

3. Select the requirement The printer prints at least 10 pages per minute.

4. Click on the Assign button.

You have now successfully linked a requirement to an iteration.

If an iteration is active, only results and artefacts for this iteration are displayed. To deselect the
current iteration or switch to a different one, follow the next steps.

1. Click in the icon in the topbar.

2. Select the empty entry in the iteration dropdown box.

30

Chapter 4. Creating custom reports
This tutorial will show how to create reports for Klaros-Testmanagement. Please note that custom
reports are only available in Klaros-Testmanagement Enterprise Edition. Basic knowledge in Java
programming and XML is required to follow this tutorial. An example of the resulting report can
be found here. The complete code can be downloaded here, feel free to modify it to your needs.

To create custom reports, navigate via the Configure entry. and Report Templates in the side menu
bar to get to the overview of custom Reports of the Klaros-Testmanagement Enterprise Edition.

There you can create a new report by clicking on the New button. You can later evaluate the
report via the Evaluate entry in the top menu bar and the Report Templates entry in the side menu
bar.

4.1. Development Environment

As a first step, this tutorial shows how to set up the development environment. In this tutorial we
set Eclipse as the development environment.

4.1.1. Creating a project to contain your reports

• Start Eclipse and select File -> New -> Other....

• In the dialog select Java -> Java Project as shown in the picture, then click on Next.

Figure 4.1. The Wizard Selection Screen

31

https://www.klaros-testmanagement.com/files/report-tutorial/report.pdf
https://www.klaros-testmanagement.com/files/report-tutorial/ReportTutorial.zip
https://www.eclipse.org/downloads

Creating custom reports

• In the next dialog enter a title for your project (e.g. ReportTutorial) and press Finish.

Figure 4.2. The New Project Wizard

• The Package Explorer in Eclipse should now show your new project.

Figure 4.3. The Package Explorer

4.1.2. Setting up the Project

• First, create a folder to hold your XML files. Right-click on your project and select New -> Folder.
In the dialog enter xml in the Folder name field and click on Finish .

32

Creating custom reports

Figure 4.4. Creating a New Folder

• Add the required libraries to your build path. Right-click on our project and select Properties. In
the dialog click on Java Build Path(1), select the Libraries(2) tab and then click on Add External
JARs...(3).

33

Creating custom reports

Figure 4.5. The Build Path Setting Screen

• In the following dialog navigate to your Klaros-Testmanagement installation folder. From there
navigate to the webapps/klaros-web/WEB-INF/lib folder and select the klaros-commons-x.y.z.jar,
klaros-core-x.y.z, klaros-model-x.y.z.jar and klaros-scripting-x.y.z.jar files, then click the Open

button.

Figure 4.6. Selecting an External Jar File

34

Creating custom reports

• Finally click on the Apply and Close button in the Build Path dialog. You now have an additional
entry in your project named Referenced Libraries.

Figure 4.7. The Package Explorer

4.2. Preparing the Data for the Report

In the next step, you will see how to prepare your data for your report. The report in this tutorial
shows a summary of all test runs for all test cases of a test suite. Furthermore, it presents a de-
scription of all executed test steps per test run, sorted by test case. In the Klaros API documenta-
tion. you will find an overview of the available data model.

The following picture shows the steps to perform to create a KlarosScript class.

Figure 4.8. Creating the KlarosScript Class

• First a class implementing the KlarosScript interface must be created. Right-click on the src
folder (1) in your project and select New -> Class.

35

https://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.API.html
https://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.API.html

Creating custom reports

• In the new dialog enter a name for your script class (2)

• Then click on the Add button (3) and enter KlarosScript in the new dialog to define the
KlarosScript interface for the class. Then click OK to close the dialog.

• Finally press the Finish button (4). After a short while the class should be created and Eclipse
should present you the following view.

Figure 4.9. The Created Class

• Before entering any code, the import statements must be provided.

 import de.verit.klaros.scripting.*;

 import de.verit.klaros.core.model.*;

 import java.util.*;

• The code to be executed must be entered into the execute method of the KlarosScript class. The
test suite to generate the report for will be passed as a parameter to the KlarosScript class. We
will see later in this tutorial how this works in detail. It is achieved by the following line of code:

 String suiteName = (String)context.getParameterValue("suiteName");

• Next, the database is accessed to retrieve the data for the report. The following snippet shows
how to access the database. This code selects all entries from the KlarosTestSuite table whose
ids match the test suite id passed to the KlarosScript and that are present in the currently active
project. The result is returned as a list, yet we will only expect a single entry to be returned.

 // Build the query using the parameter

 String suiteQuery = "select suite from KlarosTestSuite suite where suite.name='" + suiteName + "'";

 if (context.getActiveProject() != null) {

 suiteQuery += " and suite.configuration.name='";

 suiteQuery += context.getActiveProject().getName();

 suiteQuery += "'";

 }

 List testSuites = context.executeQuery(suiteQuery);

• To avoid any errors when executing the KlarosScript, the following code is added for the case
that no matching test suite has been found.

 if (!testSuites.isEmpty()) {

 testSuite = testSuites.get(0);

 ...

 }

• Now we add the test-suite to the context so that the template engine can access it later.

 testSuite = testSuites.get(0);

 context.add("testSuite", testSuite);

36

Creating custom reports

• The preparations for the pie chart in the report can now begin. The report should present a pie
chart showing the amount of test case results in the states' error, skipped, failure and success.
Therefore, a list of KlarosTestCaseResult is required for each result type. This code is also
placed inside the if-clause.

 List<KlarosTestCaseResult> error = new ArrayList<>();

 List<KlarosTestCaseResult> failure = new ArrayList<>();

 List<KlarosTestCaseResult> success = new ArrayList<>();

 List<KlarosTestCaseResult> skipped = new ArrayList<>();

• Now the lists get filled. First we step through the list of test suite results belonging to the test
suite.

 for (KlarosTestSuiteResult testSuiteResult : testSuite.getResults()) {

 ...

 }

• Within the test-suite results loop, the test results of each test case are being iterated over. The
following code is inserted into the for loop created in the previous step.

 for (KlarosTestCaseResult testCaseResult : testSuiteResult.getResults()) {

 ...

 }

• We now have the test results at hands and can distribute them to the four lists defined earlier,
depending on the state of the test result. This code must be placed inside the second for loop
defined one step before.

 if (testCaseResult.isError()) error.add(testResult);

 else if (testCaseResult.isFailure()) failure.add(testResult);

 else if (testCaseResult.isPassed()) success.add(testResult);

 else if (testCaseResult.isSkipped()) skipped.add(testResult);

• We are almost done. The last step is to store the four lists containing the test results in the
context to access them later from the template. This code is placed inside the outermost if-
clause and outside the two for loops.

 context.add("error", error);

 context.add("failure", failure);

 context.add("success", success);

 context.add("skipped", skipped);

• The complete Class can be found in the archive here.

4.3. Creating the Report Layout

Klaros-Testmanagement uses the JBoss Seam PDF framework to render the report and fill the
retrieved data into the layout template.

1. We will start with an empty document that contains only a header and footer definition.

<p:document xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:p="http://jboss.org/schema/seam/pdf"

 title="Klaros-Testmanagement Test Plan Report" marginMirroring="true"

 author="#{user.name}" creator="#{user.name}" pageSize="A4">

 <f:facet name="header">

 <p:font size="8">

 <p:header borderWidthBottom="0.1" borderColorBottom="black" borderWidthTop="0" alignment="center">

37

https://www.klaros-testmanagement.com/files/report-tutorial/ReportTutorial.zip
https://docs.jboss.org/seam/latest/reference/html/itext.html

Creating custom reports

 <p:text value="Test Run Report - Generated on #{date} by #{user.name}" />

 </p:header>

 <p:footer borderWidthTop="0.1" borderColorTop="black" borderWidthBottom="0" alignment="center">

 <p:text value="Page " />

 <p:pageNumber />

 <p:text value=" - Created with Klaros-Testmanagement (www.klaros-testmanagement.com)" />

 </p:footer>

 </p:font>

 </f:facet>

 <p:paragraph>

 <p:text value=" " />

 </p:paragraph>

</p:document>

This snippet creates a header that is displayed on every page. It contains the date and the
name of the Klaros-Testmanagement user who created the report. The footer contains the page
number and an informative text that the report was created with Klaros-Testmanagement. For
the header the borderWidthBottom attribute was set to provide a separation from the following
text. Likewise for the footer the borderWidthTop attribute was used to create a single line for
separation.

2. Next we create a front page accumulating the main information about the report.

The layout of the front page is done using <p:paragraph> elements for formatting. These ele-
ments use alignment and spacing to position the text. To change the font of the paragraphs,
you can use the <p:font> element and use its style and size attributes to highlight text.

 <p:paragraph alignment="center" spacingAfter="100">

 <p:text value="" />

 </p:paragraph>

 <p:font style="bold" size="32">

 <p:paragraph alignment="center" spacingAfter="75">

 <p:text value="Test Run Report" />

 </p:paragraph>

 </p:font>

 <p:font style="normal" size="12">

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="Created by" />

 </p:paragraph>

 </p:font>

 <p:font style="bold" size="16">

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="#{user.name} (#{user.email})" />

 </p:paragraph>

 </p:font>

 <p:font style="normal" size="12">

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="on" />

 </p:paragraph>

 </p:font>

 <p:font style="bold" size="16">

 <p:paragraph alignment="center" spacingAfter="75">

 <p:text value="#{date}" />

 </p:paragraph>

 </p:font>

 <p:font style="normal" size="12">

 <p:paragraph alignment="center" spacingAfter="30">

 <p:text value="Testsuite " />

 <p:text value="#{testSuite.name}" />

 <p:text value=" - " />

38

Creating custom reports

 <p:text value="#{testSuite.shortname}" />

 <p:text value=" - revision " />

 <p:text value="#{testSuite.revisionId}" />

 </p:paragraph>

 <p:paragraph alignment="center" spacingAfter="5">

 <p:text value="SUT: " />

 <p:text value="#{testSuite.sut.name}" />

 <p:text value=" - " />

 <p:text value="#{testSuite.sut.productversion}" />

 </p:paragraph>

 </p:font>

 <p:newPage />

The resulting cover sheet can be found below.

Figure 4.10. Sample Front Page of a Report

As seen with the header and footer definition, values stored in the context can be accessed
by preceding the context variable enclosed in curly brackets with a leading # character, e.g.
#{user.name}. The context variable for the user is automatically inserted into the context by
Klaros-Testmanagement. We used this already when we prepared the data for this report and
added the test suite to the context.

context.add("testSuite", testSuite);

For the front page we access this context variable to retrieve the data that came with this test
suite, e.g. #{testSuite.name}, #{testSuite.shortname}, and #{testSuite.revisionId}. You can find
the accessible attributes in the Klaros-Testmanagement API Documentation reference in the
online documentation. All attributes that have a get-method can be accessed. e.g. for #{test-
Suite.name} you will find the method getName() in its derived IKlarosLabeledObject interface.

39

https://www.klaros-testmanagement.com/files/doc/html/User-Manual.Appendix.API.html#package-de.verit.klaros.core.model

Creating custom reports

To add a page break to the document, you can use the following:

 <p:newPage />

3. Now that we have created a front page we can start to fill in the data we prepared and stored in
the context. To give a quick overview over the test results we will start with a pie chart displaying
the test case results in this test suite.

 <p:paragraph horizontalAlignment="center" spacingAfter="25">

 <p:piechart title="Test Results per Test Run" direction="anticlockwise"

 circular="true" startAngle="30" labelGap="0.1" labelLinkPaint="#000000"

 plotBackgroundPaint="#ffffff" labelBackgroundPaint="#ffffff" is3D="true"

 borderVisible="false">

 <p:series key="results">

 <p:data key="Error [#{error.size}]" value="#{error.size}"

 sectionPaint="#FF0A0A" />

 <p:data key="Success [#{success.size}]" value="#{success.size}"

 sectionPaint="#33CC00" />

 <p:data key="Failure [#{failure.size}]" value="#{failure.size}"

 sectionPaint="#FFCC00" explodedPercent=".2" />

 <p:data key="Skipped [#{skipped.size}]" value="#{skipped.size}"

 sectionPaint="#FFFFFF" />

 </p:series>

 </p:piechart>

 </p:paragraph>

An example of a generated pie chart can be found below.

Figure 4.11. A Generated Pie Chart

For a detailed description about how to lay out the pie chart and many other charts, please
check the seam-pdf documentation. Again you might remember that we added four List<-
KlarosTestCaseResult> objects to the context:

 context.add("error", error);

 context.add("failure", failure);

 context.add("success", success);

 context.add("skipped", skipped);

40

https://docs.jboss.org/seam/latest/reference/html/itext.html

Creating custom reports

These four objects represent the results of our test suite. We can simply use the size of the
collections representing the data for the pie chart:

<p:data key="Error [#{error.size}]" value="#{error.size}" sectionPaint="#FF0A0A" />

4. Next, we want to create a separate page for each test case in the test-suite and display the
results in a table.

As this might get a bit lengthy, only fragments of the code will be presented here. An example
can be found below.

Figure 4.12. The Header of a Test Case Report

First we need to loop over all test cases of the test suite:

 <ui:repeat value="#{testSuite.testCases}" var="testCase">

 ...

 </ui:repeat>

We create a loop in the template engine using the <ui:repeat> element. The value attribute gets
assigned a collection, in our case the list of test cases. The var attribute defines a variable
which can be used within the loop to address the current value. of the current value, e.g. test-
Case. With each pass of the loop, the variable testCase gets the next value from the collection.

Now for the table. We need a two column table and the width of the second column should be
three times the size of the first. The code is as follows:

 <p:table columns="2" widths="1 3">

 ...

 </p:table>

Now the table is filled with data. For this purpose, it is necessary to define how each table cell
should look like. The following code is embedded between the <p:table> elements.

 <p:cell horizontalAlignment="right">

 <p:font style="bold" size="8">

 <p:paragraph>

 <p:text value="Project: " />

 </p:paragraph>

 </p:font>

 </p:cell>

 <p:cell>

 <p:paragraph alignment="left">

 <p:text value="#{testCase.configuration.name}" />

 </p:paragraph>

 </p:cell>

 <p:cell horizontalAlignment="right">

41

Creating custom reports

 <p:font style="bold" size="8">

 <p:paragraph>

 <p:text value="Creator: " />

 </p:paragraph>

 </p:font>

 </p:cell>

 <p:cell>

 <p:paragraph alignment="left">

 <p:text value="#{testCase.creator.name}" />

 </p:paragraph>

 </p:cell>

 ...

The table is supposed to have two columns, thus two cells per row must be specified as well.
In the above code, the first cell of a row contains the name of the test project, while the second
cell contains the name of the user who created the test case. It is possible to format the text
inside a cell as shown by the <p:font> element.

5. Next we need the test case results for the test case being displayed. This is where another
element comes in. If there is no result available for a test case, a standard text should be dis-
played instead of an empty cell.

 <ui:fragment rendered="#{testCase.results.isEmpty()}">

 <p:font style="normal" size="14">

 <p:paragraph alignment="left" spacingAfter="15"

 indentationLeft="10">

 <p:text value="No test runs found for this test case." />

 </p:paragraph>

 </p:font>

 </ui:fragment>

Notice the <ui:fragment rendered="..."> element. This part of the document is only integrat-
ed into the PDF if the condition defined in the rendered attribute evaluates to true. This could be
compared to an if-clause in programming languages. In the expression #{testCase.results.
isEmpty()} the isEmpty() method of the test case result list is called which evaluates to a
boolean value. Next we have to define the block that displays the data in case there are test
results present for the test case:

 <ui:fragment rendered="#{!testCase.results.isEmpty()}">

 ...

 </ui:fragment>

Note the ! which is used to negate the boolean expression we used in the block before. The
code inside this block will be executed if the list of results has at least one entry.

6. Now we loop over the results of the test cases, which will include each test run for a test case.
An example of a test run can be found below.

42

Creating custom reports

 <ui:repeat value="#{testCase.results.toArray()}" var="testResult">

 <!-- Start Test Result summary (equivalent to Test Run) -->

 ...

 </ui:repeat>

This will provide us with the test results of a test case in the variable testResult. The next
pieces of code include the displaying of a summary of the test result which is quite similar to
the code used displaying the test case summary. You can examine it in the provided source file.

7. For this purpose, another loop must be created within the test result loop.

 <!-- Start Test Step Result summary -->

 <ui:fragment rendered="#{!testResult.stepResults.isEmpty()}">

 <ui:repeat value="#{testResult.stepResults}" var="testStepResult">

 ...

 </ui:repeat>

 </ui:fragment>

 <ui:fragment rendered="#{testResult.stepResults.isEmpty()}">

 <p:font style="normal" size="10">

 <p:paragraph alignment="left" spacingAfter="35"

 indentationLeft="25">

 <p:text value="No test step results found." />

 </p:paragraph>

 </p:font>

 </ui:fragment>

Inside the <ui:repeat>...</ui:repeat> block a table is created. This table should be displayed
if there are any results for the test case step. The table displays the precondition, action, and
postcondition of the test case step and also the test case step result, the test case step sum-
mary, and the test case step description. The test case step result cell of the table will get
coloured according to the result, e.g. green if the step passed. Each table will have the number
of the step as headline.

8. Displaying the step number.

43

Creating custom reports

 <p:font style="bold" size="8">

 <p:paragraph indentationLeft="20">

 <p:text value="Step #{testResult.stepResults.indexOf(testStepResult)+1}" />

 </p:paragraph>

 </p:font>

Here you can see how to retrieve the index of the test case step result from the list of test
results. testStepResult is the variable from the inner loop, while testResult is the variable from
the outer loop. As counting starts at zero we have to increment the retrieved value, otherwise
the first step would be shown as step 0.

9. The table should only be displayed if the test case contains at least one test step.

 <p:table columns="3" widths="3 3 3" spacingBefore="5"

 rendered="#{testCase.testCaseSteps!=null and testCase.testCaseSteps.size() > 0}">

 ...

 </p:table>

10.Retrieving the test case step properties (precondition, action, postcondition).

 <p:cell horizontalAlignment="left">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text

 value="#{testCase.testCaseSteps.get(testStepResult.precondition}" />

 </p:paragraph>

 </p:font>

 </p:cell>

To get to the test case step properties we have to access the test case to retrieve the data.
From the list of test case steps we retrieve the test case step via the index in the list of the test
case step results and then the precondition can be accessed. The same applies to the action
and the postcondition of the test case step.

11.Coloring a cell depending on the test step result.

 <ui:fragment rendered="#{testStepResult.isPassed()}">

 <p:cell backgroundColor="rgb(0,255,0)"

 horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Passed" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

 <ui:fragment rendered="#{testStepResult.isError()}">

 <p:cell backgroundColor="rgb(255,0,0)"

 horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Error" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

 <ui:fragment rendered="#{testStepResult.isFailure()}">

 <p:cell backgroundColor="rgb(255,215,0)"

 horizontalAlignment="center">

 <p:font style="normal" size="8">

44

Creating custom reports

 <p:paragraph>

 <p:text value="Failed" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

 <ui:fragment rendered="#{testStepResult.isSkipped()}">

 <p:cell horizontalAlignment="center">

 <p:font style="normal" size="8">

 <p:paragraph>

 <p:text value="Skipped" />

 </p:paragraph>

 </p:font>

 </p:cell>

 </ui:fragment>

The cells are rendered depending on the status of the test case step, therefore the methods
isError(), isFailure() and so on are called for the test result object under processing. The
cells are colored by setting the backgroundColor attribute to the desired RGB value.

45

Glossary

A
Administrator A user role that has full access to all functions.

This includes installation and maintenance of the software, updates,
system settings, user administration, backups and all rights to create,
execute and evaluate tests.

Authentication Users are usually authenticated via user name and password.

In Klaros-Testmanagement the user authentication can be done direct-
ly in the software or via an external LDAP or Active Directory directory.

Automated Test Cases The test results from automation tools are imported via result files in-
to Klaros-Testmanagement. If both manual and automated automated
test results are available, they can be evaluated together.

B
Bugzilla Bugzilla is an open source issue management system. Detailed infor-

mation can be found on the Bugzilla Web Site.

Klaros-Testmanagement provides an interface to Bugzilla.

C
Change Tracking Complete tracking of all changes to managed objects through auto-

matic logging of modifications.

In Klaros-Testmanagement, all changes are highlighted in color on the
detail page of the corresponding Object over time.

Category All objects can be arranged in categories for better overview. Grouping
of objects (requirements, iterations, test systems, test environments,
test cases or test suites) into a category tree can be done according to
self-selected criteria. Multiple categorizations are also possible.

Community Edition The free edition of Klaros test management. It has a limited feature set,
but can also be used freely for commercial purposes. See also Enter-
prise">Enterprise Edition.

Compliance The capability of the software product to adhere to standards, conven-
tions or regulations in laws and similar prescriptions [ISO9126].

Compliance Rate In Klaros Test Management, the conformance rate shows how many
test cases assigned to a requirement have been executed with the re-
sult "Passed".

46

http://www.bugzilla.org/

Glossary

Continuous Integration Continuous Integration (CI) is the automated integration of code
changes from multiple contributors into a single software project. It is
an important DevOps best practice that enables developers to regular-
ly merge code changes into a central repository where builds and tests
are then executed.

A plug-in for the Jenkins Continuous Integration Server automatically
transfers automatically transfers the test results of a build to Klaros
Test Management, where they can be are evaluated.

Coverage, Requirements
Coverage

The requirement coverage represents the ratio of requirements cov-
ered by tests to the total set of defined requirements.

In Klaros Test Management, requirements can be directly entered and
assigned to test cases. assigned to test cases. Individual requirements
can be covered by several tests and one test can cover more than one
requirement.

D
Dashboard A dashboard displays a collection of information, typically in the form

of charts.

In Klaros-Testmanagement dashboards display the evaluations for a
specific test project. The displayed diagrams can be individually com-
bined to form a dashboard. Each user can compile as many dash-
boards as desired.

Dashboards can be private (visible only to the creator) or public. Ad-
ministrators can create default dashboards.

Data Base A database is a collection of information organized in interrelated ta-
bles of data and specifications of data objects.

Klaros-Testmanagement requires a database system to store the ob-
jects and is delivered with a preconfigured Apache Derby database.
Other supported database systems are MariaDB, Microsoft SQLServer,
MySQL and PostgresSQL.

Details Page Each object (such as test cases, requirements, iterations, etc.) has its
own detail page with various other subviews. These vary depending
on the object and show detailed information for example “ Properties”,
“Attachments”, “Changes” and “Results” an.

Docker Docker is free software for isolating applications through container vir-
tualization. The containers contain all necessary packages and can
thus be easily transported and installed as files.

Klaros Test Management can also be run as a container within a Dock-
er-based environment. Ready-to-use Docker images for various data-
bases are already available. already available. Detailed documentation
is available at GitHub.

47

https://github.com/klaros-testmanagement/klaros-docker

Glossary

E
Enterprise Edition The commercial edition with full support is licensed per user. The mini-

mum installation supports 3 users. A free 30-day demo can be request-
ed Demo.

Environment Variables Environment variables are dynamically named values that can affect
the behavior of running processes on a computer. They are part of the
environment in which a process runs.

By setting the environment variable KLAROS-HOME before the start of
the application, the destination of the Klaros home directory can be
moved to another location.

Error (Verdict) A test execution error occurs when the system cannot execute the test
correctly. It should not be confused with a failure.

Evaluation The type of test result evaluation: manual or automated.

F
Failure (Verdict) A test is deemed to fail if its actual result does not match its expected

result. (ISTQB). It should not be be confused with an error.

Functional Test Design Tech-
nique

Procedure to derive and select test cases based on an analysis of the
specification of the functionality of a component or system without
reference to its internal structure. (ISTQB), also known as black box
and white box tests.

G
Guest A user role with full, but read-only access to all data. A guest can

view and save reports in various formats. This role is intended for e.g.
project managers, customers or reviewers/reviewers.

I
ID The ID of an object is created automatically when it is created and can-

not be changed later. All IDs consist of an abbreviation for the respec-
tive object (e.g. TC for test case, ITR for iteration) and an ascending
number. number. “SEG00025” would therefore be the test segment 25.

Inconclusive (Verdict) A test is inconclusive if it is unclear, if its actual result matches its ex-
pected result.

Integration Integration refers to the connection of external systems.

Klaros-Testmanagement has interfaces for integration with issue and
requirements management systems, test automation and load testing
tools, and and continuous integration servers. There are also interfaces
to authentication and e-mail servers.

48

https://www.klaros-testmanagement.com/trial

Glossary

Issue An issue is a partial aspect that is required to complete a piece of work.
This can be a bug, a requested feature, a task, missing documentation
or something similar. An issue is tracked in an issue management sys-
tem.

Klaros-Testmanagement has interfaces to several issue management
systems. This means that errors found can be transferred directly to
the connected IMS, without having to leave the application.

Iteration An iteration is a complete development loop resulting in a release (in-
ternal or external) of an executable product, a subset of the final prod-
uct under development, which grows from iteration to iteration to be-
come the final product. (ISTQB)

In Klaros test management supports agile development principles and
manages iterations as dedicated objects.

J
Java In order to run Klaros-Testmanagement, a Java runtime environment is

required. This is delivered with the installation file and used automat-
ically.

JavaScript JavaScript is a programming language used in web browsers and is
required for running Klaros test management. When using JavaScript
blockers such as NoScript or similar. When using JavaScript blockers
such as NoScript or similar, the execution of JavaScript for Klaros-
Testmanagement must be allowed as an exception.

JIRA JIRA is a popular application by the company Atlassian Software for
defect management, troubleshooting, and project management.

Klaros-Testmanagement has an integration with JIRA.

Job Test activities are planned and logged by means of jobs. The execution
and results of the executed jobs are automatically logged and used for
evaluation.

L
Latest Success Rate, Report
Diagram

The “Last Success Rate” report displays the latest results of executed
test cases for the selected combination of test system (one or more)
and test environment (one or more) as a chart on the dashboard.

Layout Template Besides the script, the layout template is the other elementary part of
a report template. It describes the structure of the generated report
document in an XML-based description language. Layout templates
can be adapted to individual requirements.

Log Panel The log panel displays status messages such as warnings or infor-
mation are displayed. By default, only the last status message is dis-
played. Clicking on the + icon opens the history.

49

http://www.atlassian.com/software/jira/
http://www.atlassian.com/

Glossary

M
Mantis Mantis (MantisBT, Mantis Bug Tracker). is an open source application

for defect management and issue tracking in software development.

Klaros test management provides integration with Mantis.

N
Notification Event Notification events may trigger an automatic e-mail notification to

specific users. These are sent out as soon as the designated event
has has occurred. Possible notification events are, “Job assigned”,
“User account created”, “Test execution failed”, “User account pass-
word changed” and “Job ready for execution”.

O
Object The objects defined in Klaros-Testmanagement are project, test case,

test step, test segment, test step result, test case result, test suite, test
suite result, test environment, system under test, test run, requirement,
iteration and job.

Overview Page Each object type has an overview page. There the individual objects,
such as test cases or iterations, are displayed in tabular form. New
objects are also created here created.

P
Passed (Verdict) A test is passed if its actual result matches its expected result. (ISTQB)

Precondition Environmental and state conditions that must be fulfilled before the
component or system can be executed with a particular test or test
procedure. (ISTQB).

Postcondition Environmental and state conditions that must be fulfilled after the ex-
ecution of a test or test procedure. (ISTQB)

Print View All objects can be rendered in a printout-optimized representation. The
level of detail can be specified with various parameters.

Project A project is the main object in Klaros Test Management and contains
all other objects assigned to a test project.

Project Overview, Report Dia-
gram

The “Project Overview” report displays the number of executed/not ex-
ecuted test cases or execution definitions and the number of sched-
uled/executed jobs as a chart on the dashboard.

Q
QF-Test QF-Test from Quality First Software is a cross-platform GUI test au-

tomation tool.

50

http://www.mantisbt.org/
http://www.qfs.de/en/qftest/

Glossary

Klaros-Testmanagement integrates with QF-Test and can import the
automatically generated test results for further processing.

R
Redmine Redmine is an open source application for defect management and

issue tracking in software development.

Klaros-Testmanagement integrates with Redmine.

Reports Reports provide information on the status of testing activities, the con-
dition of the software, indications of critical components and enable
forward planning. For this purpose, the data from the database are sort-
ed according to certain criteria and prepared in textual and graphical
overviews. Examples of reports are “Project overview” and “Test activ-
ity” as well as overviews of test progress, test results and test runs.

Klaros-Testmanagement contains numerous predefined, basic re-
ports. Individual reports can be created by the user. All reports are ex-
portable to various formats such as PDF or Excel (also for further edit-
ing).

Report Template A report template predefines a report that can take report parameters
and be customized by the user as needed. It consists of a Script and
a Layout Template.

With report templates, ready-made reports are available which can be
customized by the user as needed.

REST (Representational
State Transfer)

Representational State Transfer (REST) is a software architecture style
that uses a subset of HTTP. It is commonly used to provide web ser-
vices.

Klaros-Testmanagement offers several integration interfaces based
on REST. These include read access to all stored information as well
as import interfaces for test results, test cases and requirements.

Requirement A user-required property or capability that software must meet or pos-
sess in order to Comply with a contract, standard, specification, or oth-
er formal document. [According to IEEE 610].

Requirements can be managed either directly in Klaros Test Manage-
ment or or synchronized with external sources such as JIRA. A ref-
erence to the corresponding requirement, e.g. to a document, can be
added to test cases and test suites (traceability).

Result, expected The behavior predicted by the specification, or another source, of a
component or system under specified conditions (ISTQB).

Revision If a major change is made to an object and the previous version is still
needed, a new revision should be created. Only selected objects such
as test cases or requirements support this mechanism.

51

http://www.redmine.org/

Glossary

Role A user role defines the rights of the user. Roles can be defined globally
and project project-specific.

The following user roles are provided: “Administrator”, “Test Manager”,
“Tester” and “Guest”.

S
Selenium Selenium is a web browser automation tool and is mainly used for test-

ing web apps.

Selenium produces JUnit XML compliant test results that can be im-
ported into Klaros test management for further processing.

Script The script is an elementary component of a report template along with
the layout template. It extracts the data intended for the report and is
available as a Java class. Scripts can be adapted to individual require-
ments.

Skipped, Verdict A test case or a test step was omitted during execution.

System Account A system access reserved for automated operations such as importing
test results. A login via the login page is not possible with this.

T
Test Activity, Report Diagram The "Test Activity" report shows the test case results for a selected

combination of one or more test systems and test environments during
a selected in a selected time period as a graph on the dashboard.

Test Case A test case comprises a set of input values, execution conditions, ex-
pected results, and postconditions defined for a specific system or test
object under test. It is developed with respect to a specific goal or test
condition, such as conformance to specific requirements.

Test Case History, Report Di-
agram

The “Test History - Overview” report displays the rate of defined test
cases versus executed test cases of a project for one or more test en-
vironments and one or more test systems in a given time period as a
graph on the dashboard.

Test Case Priority The priority of the test case: “Low”, “Medium” or “High”.

Test Case Progress, Report
Diagram

The Test Progress - Overview report shows the rate of the executed
versus the defined test cases of a project project for a given set of test
environments and test systems as a graph on the dashboard.

Test Case Status The status of the test case. Possible values are “Locked”, “Approved”,
“Draft” and “Omitted”.

Test Step A test step in Klaros-Testmanagement is the smallest action that is
processed within a test case. It contains execution preconditions, ex-

52

Glossary

pected results, and execution postconditions for each individual action
during test execution.

Test Case Result The result of the execution of a test case including a verdict such as
“Skipped”, “ Passed”, “Failed” or “Failed”.

Test Environment A test environment represents the external circumstances that can in-
fluence the test result. Examples for test environments are e.g. the op-
erating system or an application server (e.g. Tomcat 10 with Ubuntu
20.04.2) or also parameters such as temperature or speed.

Test Environment Overview,
Report Diagram

The “Test Environment - Overview” report displays the success and
progress rate of test systems under a single test environment in a radar
chart on the dashboard. If less than three test systems are configured,
a bar chart is displayed instead.

Tester A user role that is allowed to view objects and execute test cases and
test suites.

Test Execution The process of running a test on the component or system under test,
producing actual result(s). (ISTQB)

Klaros-Testmanagement automatically guides and logs test execution,
see Testrunner.

Test Manager A test manager has full read and write access to all data of a project. He
can create, modify and delete all types of objects and manage project
settings.

Test Run A test run contains the results of the execution of a single test case
or an entire test suite. It always refers to exactly one test system and
exactly one test environment.

Testrunner Klaros-Testmanagement contains a web-based client for the execution
of manual tests. This guides the tester through the test steps, gives
him the possibility to create annotations and attachments and auto-
matically logs the test progress and results.

Test Step A test step in Klaros Test Management is the smallest action that is
processed within a test case. It contains execution preconditions, ex-
pected results and execution postconditions for each individual action
during test execution.

testSegment A test segment in Klaros-Testmanagement is defined sequence of in-
dividual test steps that can be inserted into a test case. A test segment
can be used in several test cases at once. This makes it possible to
realize a module concept based on test steps.

Test Suite A test suite is a set of test cases that can be executed together in a
group.

Test system, System under
test, Unit under test, Test ob-
ject

In Klaros-Testmanagement, a test system represents the component
or system that is to be tested. Depending on the business sector, the

53

Glossary

terms system under test, SUT, DUT or test object are also commonly
used.

System under Test Overview,
Report Diagram

The Test System Overview report shows the success and progress rate
of test progress rate of test environments under a single test system
in a radar chart on the dashboard. If less than three test environments
are configured, a bar chart is displayed instead.

Test Type A group of test activities based on specific test objectives with the pur-
pose of testing a component or system for specific properties (Func-
tional, Non-Functional, Structural, Regression, Retest).

Trac Trac is an open source application for defect management and issue
tracking in software development. Klaros Test Management integrates
with Trac.

V
Variety The expected outcome of the test: positive or negative.

Verdict A rating is the result of the executed test case, test step or test
suite. Possible ratings are “Passed”, “Failed”, “Error”, “Inconclusive”,
“Skipped”.

W
Web Browser Klaros-Testmanagement is a web application and runs within a web

browser. Supported browsers are Apple Safari, Google Chrome, Mi-
crosoft Edge and Mozilla Firefox.

Work Log The work log shows the chronological progression and duration of the
activities for processing a job. The time spent for the entire test exe-
cution results from the sum of the execution times. the sum of the ex-
ecution times.

Y
YouTrack YouTrack is a popular application by the company JetBrains for defect

management, troubleshooting, and project management.

54

http://trac.edgewall.org/
https://www.jetbrains.com/youtrack/
https://www.jetbrains.com/

	Klaros-Testmanagement Tutorial
	Table of Contents
	Chapter 1. Introduction
	1.1. Navigation

	Chapter 2. Quick Start Guide
	2.1. Setup
	2.1.1. Creating a Project

	2.2. Creating Systems under Test
	2.3. Creating Test Environments
	2.4. Creating Test Cases
	2.5. Creating Test Suites
	2.6. Executing Tests
	2.6.1. Executing Single Test Cases
	2.6.2. Executing Test Suites

	2.7. Results and Reports

	Chapter 3. How-Tos
	3.1. User Role Management
	3.1.1. Limiting Project Access

	3.2. Categorization
	3.3. User Defined Properties
	3.4. Pausing and Resuming Test Cases and Test Runs
	3.5. Configuring Issue Management Systems
	3.6. Issues
	3.6.1. Linking Issues
	3.6.2. Creating Issues

	3.7. Revisions
	3.8. Requirements
	3.9. Iterations

	Chapter 4. Creating custom reports
	4.1. Development Environment
	4.1.1. Creating a project to contain your reports
	4.1.2. Setting up the Project

	4.2. Preparing the Data for the Report
	4.3. Creating the Report Layout

	Glossary

